Apr 6th, 11:15 AM - 11:45 AM

Panel Discussion presentation: "An Introduction to the Dryad Repository"

Elena Feinstein
University of North Carolina at Chapel Hill

Follow this and additional works at: http://escholarship.umassmed.edu/escience_symposium

Part of the Library and Information Science Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
An Introduction to the Dryad Repository

Elena Feinstein
Dryad Librarian and Curator
Metadata Research Center
University of North Carolina at Chapel Hill
curator@datadryad.org
Dryad is an international repository of data underlying peer-reviewed articles in the basic and applied biosciences. Dryad enables scientists to validate published findings, explore new analysis methodologies, repurpose data for research questions unanticipated by the original authors, and perform synthetic studies.

Dryad is governed by a consortium of journals that collaboratively promote data archiving and ensure the sustainability of the repository.

http://datadryad.org
Brussels Declaration on STM Publishing

“Raw research data should be made freely available to all researchers. Publishers encourage the public posting of the raw data outputs of research. Sets or sub-sets of data that are submitted with a paper to a journal should wherever possible be made freely accessible to other scholars”

Defining the need

- Data no longer published within the article
- Data is not shared or only shared selectively
- Data that is not archived is eventually lost
- Specialized repositories (e.g., GenBank) cover only certain data types and do so incompletely
- Supplementary materials not the best long term option
- Funding agencies and journals mandating data archiving
Table IIIa.

Measurements of Twenty-eight Adult and Young Females which Perished.

<table>
<thead>
<tr>
<th></th>
<th>Total Length</th>
<th>Ancient Extent</th>
<th>Weight</th>
<th>Length of Body and Head</th>
<th>Length of Humeral Forearm</th>
<th>Length of Thigh</th>
<th>Width of Neck</th>
<th>Length of Keel of Sternal Scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 ♂</td>
<td>219</td>
<td>20.1</td>
<td>34.4</td>
<td>.709</td>
<td>.710</td>
<td>1.183</td>
<td>1.134</td>
<td>.815</td>
</tr>
<tr>
<td>28 ♂</td>
<td>219</td>
<td>20.3</td>
<td>34.5</td>
<td>.714</td>
<td>.678</td>
<td>1.123</td>
<td>1.207</td>
<td>.845</td>
</tr>
<tr>
<td>29 ♂</td>
<td>212</td>
<td>20.6</td>
<td>34.6</td>
<td>.714</td>
<td>.732</td>
<td>1.145</td>
<td>1.143</td>
<td>.541</td>
</tr>
<tr>
<td>30 ♂</td>
<td>223</td>
<td>23.1</td>
<td>29.8</td>
<td>.672</td>
<td>.682</td>
<td>1.014</td>
<td>1.599</td>
<td>.720</td>
</tr>
<tr>
<td>31 ♂</td>
<td>219</td>
<td>20.3</td>
<td>31.7</td>
<td>.741</td>
<td>.721</td>
<td>1.187</td>
<td>1.215</td>
<td>.836</td>
</tr>
<tr>
<td>32 ♂</td>
<td>231</td>
<td>24.2</td>
<td>31.1</td>
<td>.727</td>
<td>.723</td>
<td>1.118</td>
<td>1.010</td>
<td>.787</td>
</tr>
<tr>
<td>33 ♂</td>
<td>215</td>
<td>20.9</td>
<td>32.2</td>
<td>.766</td>
<td>.751</td>
<td>1.227</td>
<td>1.220</td>
<td>.884</td>
</tr>
<tr>
<td>34 ♂</td>
<td>215</td>
<td>27.7</td>
<td>22.2</td>
<td>.700</td>
<td>.743</td>
<td>1.205</td>
<td>1.065</td>
<td>.865</td>
</tr>
<tr>
<td>35 ♂</td>
<td>215</td>
<td>23.0</td>
<td>30.1</td>
<td>.686</td>
<td>.662</td>
<td>1.042</td>
<td>1.082</td>
<td>.781</td>
</tr>
<tr>
<td>36 ♂</td>
<td>219</td>
<td>20.1</td>
<td>30.3</td>
<td>.709</td>
<td>.655</td>
<td>1.062</td>
<td>1.092</td>
<td>.811</td>
</tr>
<tr>
<td>37 ♂</td>
<td>223</td>
<td>21.6</td>
<td>26.1</td>
<td>.611</td>
<td>.629</td>
<td>1.102</td>
<td>1.102</td>
<td>.846</td>
</tr>
<tr>
<td>38 ♂</td>
<td>216</td>
<td>23.6</td>
<td>21.8</td>
<td>.727</td>
<td>.700</td>
<td>1.120</td>
<td>1.120</td>
<td>.855</td>
</tr>
<tr>
<td>39 ♂</td>
<td>217</td>
<td>20.9</td>
<td>20.9</td>
<td>.711</td>
<td>.660</td>
<td>1.098</td>
<td>1.098</td>
<td>.749</td>
</tr>
<tr>
<td>40 ♂</td>
<td>215</td>
<td>25.5</td>
<td>20.9</td>
<td>.720</td>
<td>.711</td>
<td>1.137</td>
<td>1.137</td>
<td>.859</td>
</tr>
<tr>
<td>41 ♂</td>
<td>222</td>
<td>24.8</td>
<td>21.0</td>
<td>.752</td>
<td>.738</td>
<td>1.180</td>
<td>1.180</td>
<td>.875</td>
</tr>
<tr>
<td>42 ♂</td>
<td>232</td>
<td>22.8</td>
<td>30.4</td>
<td>.652</td>
<td>.664</td>
<td>1.042</td>
<td>1.541</td>
<td>.724</td>
</tr>
<tr>
<td>43 ♂</td>
<td>212</td>
<td>24.8</td>
<td>30.8</td>
<td>.717</td>
<td>.667</td>
<td>1.090</td>
<td>1.090</td>
<td>.809</td>
</tr>
<tr>
<td>44 ♂</td>
<td>223</td>
<td>22.6</td>
<td>21.2</td>
<td>.706</td>
<td>.706</td>
<td>1.102</td>
<td>1.102</td>
<td>.588</td>
</tr>
<tr>
<td>45 ♂</td>
<td>219</td>
<td>20.3</td>
<td>31.7</td>
<td>.715</td>
<td>.715</td>
<td>1.128</td>
<td>1.066</td>
<td>.815</td>
</tr>
<tr>
<td>46 ♂</td>
<td>223</td>
<td>23.9</td>
<td>31.7</td>
<td>.718</td>
<td>.710</td>
<td>1.099</td>
<td>1.099</td>
<td>.800</td>
</tr>
<tr>
<td>47 ♂</td>
<td>235</td>
<td>21.7</td>
<td>31.5</td>
<td>.726</td>
<td>.701</td>
<td>1.143</td>
<td>1.143</td>
<td>.667</td>
</tr>
<tr>
<td>48 ♂</td>
<td>216</td>
<td>23.0</td>
<td>22.3</td>
<td>.691</td>
<td>.704</td>
<td>1.143</td>
<td>1.143</td>
<td>.810</td>
</tr>
<tr>
<td>49 ♂</td>
<td>235</td>
<td>22.6</td>
<td>20.7</td>
<td>.695</td>
<td>.684</td>
<td>1.118</td>
<td>1.118</td>
<td>.744</td>
</tr>
<tr>
<td>50 ♂</td>
<td>247</td>
<td>23.1</td>
<td>21.9</td>
<td>.721</td>
<td>.721</td>
<td>1.157</td>
<td>1.157</td>
<td>.902</td>
</tr>
<tr>
<td>51 ♂</td>
<td>257</td>
<td>21.8</td>
<td>20.6</td>
<td>.732</td>
<td>.738</td>
<td>1.172</td>
<td>1.172</td>
<td>.864</td>
</tr>
<tr>
<td>52 ♂</td>
<td>245</td>
<td>22.2</td>
<td>22.5</td>
<td>.728</td>
<td>.725</td>
<td>1.194</td>
<td>1.194</td>
<td>.859</td>
</tr>
<tr>
<td>53 ♂</td>
<td>248</td>
<td>20.1</td>
<td>32.3</td>
<td>.720</td>
<td>.707</td>
<td>1.149</td>
<td>1.149</td>
<td>.834</td>
</tr>
</tbody>
</table>

Average: 155 211 25.3 .726 .709 1.131 .691 .820

General average for both sexes: 160 215 25.8 .728 .709 1.128 .691 .824

The gap between attitude and practice

- Authors in the British Medical Journal randomly received either a general or specific request to share their data (n=29)
- Researchers receiving specific requests for data were less likely, and slower, to respond.
- Only one researcher released data. Others requested further information, clarification, or authorship.

“As soon as results of a study are published, authors have a conflict of interest, and are not well placed to judge the suitability of third-party analyses of the data.”

Sharing-on-request is not effective

- Requested data from 141 articles in American Psychological Association journals.

- “6 months later, after … 400 emails, [sending] detailed descriptions of our study aims, approvals of our ethical committee, signed assurances not to share data with others, and even our full resumes…” only 27% of authors complied

Why do authors withhold data?

- In a survey of 1240 geneticists
 - 47% had been denied at least one request for data or materials in the preceding 3 yrs
 - 28% reported that they had been unable to confirm published research because of data withholding

- The most common reasons cited for withholding:
 - Too much effort to produce the data (80%)
 - Protecting the ability of a junior colleague to publish (64%)
 - Protecting their own ability to publish (57%)

Potential archiving solutions

Author-managed websites
Avoids some of the hazards of informal sharing, but is fragile.

Specialized databases (e.g. GenBank, PDB)
Will cover some datatypes well, some not at all; High quality data, but with greater submission burden; Diversity endangers sustainability

Supplementary materials online
Publisher provides basic infrastructure, but with low level of service.

Public repositories
Institutional or disciplinary
About 85% of relevant studies submit DNA sequence data to GenBank

<table>
<thead>
<tr>
<th>Journal</th>
<th>No. of Studies</th>
<th>Data not submitted to GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
<td>39</td>
<td>6</td>
</tr>
<tr>
<td>MBE</td>
<td>109</td>
<td>4</td>
</tr>
<tr>
<td>Nature</td>
<td>42</td>
<td>3</td>
</tr>
<tr>
<td>PLoS Biology</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>PNAS</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>

Rapid growth in supplemental data

% of published research articles with supplemental data

Year	%SD
1999 | 0
2000 | 2
2001 | 3
2002 | 5
2003 | 7
2004 | 22
2005 | 40
2006 | 55
2007 | 65
2008 | 75
2009 | 87

NFAIS/NISO Supplementary Materials Meeting Summary Report
“Beginning November 1, 2010, The Journal of Neuroscience will no longer allow authors to include supplemental material when they submit new manuscripts and will no longer host supplemental material on its web site for those articles. When articles are published, authors will be allowed to include a footnote with a URL that points to supplemental material on a site they support and maintain, together with a brief description of what the supplemental material includes, but that supplemental material will not be reviewed or hosted by The Journal.”

The Journal of Neuroscience, August 11, 2010, 30(32):10599-10600
NSF Data Management Plans

- A new requirement for a one page supplement to all proposals
- To include:
 - The types of data to be produced
 - The standards that would be applied for format, metadata content, etc.
 - Provisions for archiving and preservation
 - Access policies and provisions
 - Plans for eventual transition or termination of the data collection after the NSF funding period
Joint Data Archiving Policy

Data are important products of the scientific enterprise, and they should be preserved and usable for decades in the future.

As a condition for publication, data supporting the results in the article should be deposited in an appropriate public archive.

Authors may elect to embargo access to the data for a period up to a year after publication.

Exceptions may be granted at the discretion of the editor, especially for sensitive information.

The End

To make data archiving and reuse a standard function of scholarly communication.

The Means

Assigning permanent identifiers (DOI) and promoting data citations

Publishing data access and download statistics

Allowing contents to be updated post-publication

Open terms of reuse (Creative Commons Zero), no paywalls

Short-term embargoes

Searchable across publishers & institutions, by human or machine

Metadata are machine harvestable, contents machine-retrievable

Preservation services, incl. migration of formats

Governed by journals (both publishers and societies)

Sustained by the economy of scholarly publishing
An ingest workflow
Example Dryad data package

Data from: Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis

When using this data, please cite the original article:

Additionally, please cite the Dryad data package:

Dryad Package Identifier
doi:10.5061/dryad.1877

102 views

Individual Data Files
SNPMarkers.csv
Recombinationintervals.csv
chromosome2alignmentannotated.gz
Perl scripts for analysis

38 views 9 downloads
38 views 11 downloads
43 views 10 downloads
33 views 10 downloads

Abstract
Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed “recombinational neighborhoods,” where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5–7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

Scientific Names
Drosophila persimilis
Drosophila pseudoobscura
Drosophila miranda

Keywords
genoese evolution
molecular evolution

Date Deposited
2010-08-20T14:58:27Z
Dryad submission system
Integrated submission with partner repositories
Data DOI in a published article

Multiple Benefits Drive Helping Behavior in a Cooperatively Breeding Bird: An Integrated Analysis

Sjouke A. Kingma,¹,* Michelle L. Hall,¹,²,³ and Anne Peters¹,⁴

1. Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Schlossallee 2, 78315 Radolfzell, Germany; 2. Mornington Wildlife Sanctuary, Australian Wildlife Conservancy, PMB 925, Derby, Western Australia 6728, Australia; 3. Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia; 4. School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia

Submitted July 23, 2010; Accepted January 3, 2011; Electronically published March 10, 2011

Dryad data: http://dx.doi.org/10.5061/dryad.8210.
Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China

LIFENG ZHU¹, SHANNING ZHANG², XIAODONG GU³, FUWEN WEI¹

Article first published online: 21 JAN 2011
DOI: 10.1111/j.1365-294X.2011.04999.x

© 2011 Blackwell Publishing Ltd

Nature Reserve and Wawushan Nature Reserve for help during fieldwork. We thank Dr Wang Shichang for assistance with data analysis.

Data accessibility

References

Data and protocol availability

We've made the following data and protocols available for the public: (1) GOS and reference sequences for RecA and RpoB; (2) Subfamilies of RecA and RpoB (Table 1, 3); (3) Alignments and Newick format phylogenetic trees of RecA and RpoB (Figure 1, 3); (4) Sequences of the genes that share assemblies with the novel recAs. (Table 2); (5) GOS ss-rRNA sequence reads; (6) the Lek clustering program. The data and protocols are available at http://bobcat.genomecenter.ucdavis.edu/GOSrecA_DATA/index.html. The data have also been submitted to the Dryad repository http://datadryad.org/ - http://dx.doi.org/10.5061/dryad.8384.
Dryad metadata

- Emphasis on simplicity and interoperability
- Using Dublin Core plus some additions from PRISM, Darwin Core, and BIBO (planned)
- Exchanging metadata with DataCite, TreeBASE, others
- Working toward making metadata available as RDF and publishing a complete application profile using Singapore Framework guidelines
Is Dryad meeting its goals?

- Are people using the data?
- Does it improve the efficiency of science?
- Does it improve the quality of science?
- Does it expand the capacity of science?
Lessons from the Gene Expression Omnibus

Citations were 69% greater for publications that shared microarray data (right) versus those that did not (left), independent of journal impact factor, date of publication, and author country of origin.

Challenges and next steps for Dryad

- New submission workflows, collaborating with journals to fit into their publication process
- Handshaking with additional partner repositories
- Building tools for more efficient curation
- Linked data / semantic web
- Name authority control – ORCID, other researcher IDs
- Subject metadata and controlled vocabularies – HIVE, another MRC project
Disciplinary vs. institutional repositories

- The infrastructure for data archiving is playing catch-up with the needs of scientists.

- There is a healthy competition between institutional and disciplinary repositories to meet these needs.

- The ingest bottleneck will drive the solution
 - Disciplinary repositories like Dryad can ingest the long tail of orphan published data.
 - Institutional libraries are best placed to develop the vast array of pre- and post-publication services that data-driven science will require.
Some of the contributors to Dryad

Dryad Consortium Board, journal partners, and data authors

NESCent: Kevin Clarke, Hilmar Lapp, Heather Piwowar, Peggy Schaeffer, Ryan Scherle, Todd Vision
UNC-CH <Metadata Research Center>: Sarah Carrier, Elena Feinstein, Jane Greenberg, Hollie White
Duke: Cliff Cunningham, Mohamed Noor, Kathleen Smith, Marcy Uyenoyama
U British Columbia: Michael Whitlock
NCSU Digital Libraries: Kristin Antelman
Yale/TreeBASE: Youjun Guo, Bill Piel
UNM/LTER/DataONE: Bill Michener, Mark Servilla
Oxford University: David Shotton
British Library: Lee-Ann Coleman, Adam Farquhar
Some Partner Journals

American Society of Naturalists
 American Naturalist
Ecological Society of America
 Ecology, Ecological Letters, Ecological Monographs, etc.
European Society for Evolutionary Biology
 Journal of Evolutionary Biology
Society for Integrative and Comparative Biology
 Integrative and Comparative Biology
Society for Molecular Biology and Evolution
 Molecular Biology and Evolution
Society for the Study of Evolution
 Evolution
Society for Systematic Biology
 Systematic Biology
Commercial journals
 Molecular Ecology
 Molecular Phylogenetics and Evolution
Initial Funding

- National Science Foundation (USA)
- Institute of Museum and Library Services (USA)
- Joint Information Systems Committee (UK)
Dryad Technology

- DataONE member node
- DSpace repository software (open source)
- Assigning DOIs via California Digital Library
- Integration with specialized repositories and databases
 - Federated searching with TreeBASE and KNB LTER
 - TreeBASE submission (using BagIt and OAI-PMH)
 - GenBank (planned for future)
http://datadryad.org

http://blog.datadryad.org

http://datadryad.org/wiki

http://code.google.com/p/dryad

Facebook & Twitter (#datadryad)