May 20th, 5:00 PM - 7:00 PM

Determining the Health Utility of Urinary Incontinence in Women

Danielle Patterson
University of Massachusetts Medical School

Benjamin Geisler
Brigham and Women's Hospital, Harvard Medical School

Abraham Morse
Brigham and Women's Hospital, Harvard Medical School

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the [Clinical Epidemiology Commons](http://escholarship.umassmed.edu/cts_retreat), [Health Services Research Commons](http://escholarship.umassmed.edu/cts_retreat), [Obstetrics and Gynecology Commons](http://escholarship.umassmed.edu/cts_retreat), and the [Urology Commons](http://escholarship.umassmed.edu/cts_retreat)

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](http://creativecommons.org/licenses/by-nc-sa/3.0/).
Determining the Health Utility of Urinary Incontinence in Women
Danielle Patterson MD1; Benjamin Geisler MD, MPH2 and Abraham Morse MD, MBA2
UMass Memorial Medical Center/University of Massachusetts Medical School, Department of Obstetrics & Gynecology, Worcester1
Brigham and Women’s Hospital/Harvard Medical School, Department of Obstetrics & Gynecology, Boston, Massachusetts2

Objective
The goal of this study was to define the utility of urinary incontinence in women using the Standard Gamble, the gold standard method for determining health state utilities, based on a diagnosis obtained from multichannel urodynamics testing, the gold standard in clinical diagnosis.

Background
Health state utility values are important in many areas of medical research. The values are used in cost-utility analysis, decision analysis and health related quality of life studies. To date, studies that have estimated the utility of urinary incontinence in women have relied on values from generic health related quality of life questionnaires such as the EQ-5D and Health Utilities Index or from expert opinion. [1-5] The utility of urinary incontinence in these studies appears to be unintuitively low, at 0.71 to 0.82, with perfect health represented by 1.0. [6, 7] The utility of health states that are much more debilitating, for example cancer (0.82), is higher than urinary incontinence. [6]

These studies have relied on patient self-diagnosis of incontinence. Additionally, they have considered all types of urinary incontinence together. Intuitively, one would think that quality of life would be affected differently with different types (stress, urge, mixed) and differing severity of incontinence.

Methods
- All adult female patients who underwent urodynamic testing at Brigham and Women's Hospital were prospectively recruited
- Diagnosis of type of incontinence was made by attending physician interpretation of the urodynamic study
- No exclusion criteria
- Patients completed three validated questionnaires

1. Sandvik Severity Index
 A validated two question symptom specific instrument to evaluate urinary incontinence
2. EQ-5D
 A five-domain generic quality of life questionnaire
3. Visual Analog Scale
 - Vertical line from 0 (worst imaginable health) to 100 (best imaginable health)
 - Patient rates own perception of health on line
4. The Standard Gamble technique was used in a standard format to determine each patient’s utility value for their health state
 - Patient is asked to choose between life in current health state and varying risks of immediate painless death
 - Gold Standard method to determine patients utility preference for their health state

Results
- This pilot study of 28 patients demonstrated a significant difference in utility value derived from the Standard Gamble and the generic health-related quality of life instruments
- There were 21 patients with stress urinary incontinence, 6 patients with urge urinary incontinence and 1 patient with mixed urinary incontinence
- Mean Sandvik score was higher in Urge Incontinence subgroup
- Mean Utility from Standard Gamble was lower in Urge Incontinence group
- Sandvik scores were moderately correlated with EQ-5D, SG and VAS utilities

Table 1. Demographic Characteristics & Sandvik Score

<table>
<thead>
<tr>
<th></th>
<th>Combined Group</th>
<th>Stress Incontinence</th>
<th>Urge Incontinence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>55.5 ± 15.8</td>
<td>58.9 ± 12.9</td>
<td>42.0 ± 25.5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.3 ± 7.9</td>
<td>29.3 ± 8.4</td>
<td>29.2 ± 8.3</td>
</tr>
<tr>
<td>Menopause</td>
<td>70 %</td>
<td>50 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Sandvik</td>
<td>8 ± 3</td>
<td>7 ± 3</td>
<td>12 ± 0</td>
</tr>
</tbody>
</table>

Fig 1. Urinary Incontinence Utilities

Fig 2. Stress Incontinence Utilities

Conclusions
- Utility scores derived from Standard Gamble were significantly higher than those derived from generic health related quality of life instruments.
- Utility scores derived from EQ-5D and VAS were similar to those previously reported in the literature. [6, 7]
- Current utility values over-estimate the degree of bother of urinary incontinence.
- Researchers should consider using higher utility values for urinary incontinence in future cost utility and quality of life studies.

References

Fig 1. Urinary Incontinence Utilities

Fig 2. Stress Incontinence Utilities

*Wilcoxon Rank Sum test