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Senescence is regarded as a physiological response of cells to stress, including telomere dysfunction, aberrant oncogenic activation,
DNA damage, and oxidative stress. This stress response has an antagonistically pleiotropic effect to organisms: beneficial as a tumor
suppressor, but detrimental by contributing to aging. The emergence of senescence as an effective tumor suppression mechanism
is highlighted by recent demonstration that senescence prevents proliferation of cells at risk of neoplastic transformation.
Consequently, induction of senescence is recognized as a potential treatment of cancer. Substantial evidence also suggests that
senescence plays an important role in aging, particularly in aging of stem cells. In this paper, we will discuss the molecular
regulation of senescence its role in cancer and aging. The potential utility of senescence in cancer therapeutics will also be discussed.

1. Introduction

Senescence was first described as a state of irreversible growth
arrest that normal human fibroblasts enter at the end of their
replicative lifespan [1]. This phenomenon has been observed
in a variety of somatic cells derived from many species, which
is in contrast to the infinite replicative capacity displayed by
germline, cancer, and certain stem cells [2]. Senescent cells
are irreversibly arrested in G1/G0 phase of the cell cycle and
lose the ability to respond to growth factors [3, 4]. They show
sustained metabolic activity for long periods of time [5] and
become resistant to apoptosis [6, 7]. In addition, senescent
cells undergo distinctive changes in morphology to a flat
and enlarged cell shape [8] and are often accompanied by
the induction of acidic senescence-associated β-galactosidase
(SA-β-gal) activity [9]. At the molecular level, alterations
in gene expression specific to senescent cells have been
identified [10–14], including those constituting senescence-
associated secretome, which can trigger profound changes in
the surrounding cells and microenvironment [15–17]. The
changes of gene expression in senescent cells can be partially
explained by alterations in chromatin structure [13], includ-
ing the formation of senescence-associated heterochromatic
foci (SAHF), which is associated with trimethylated lysine 9
of histone H3, heterochromatin protein 1, and high-mobility
group A protein [18–20]. The formation of SAHF requires

the recruitment of pRb to E2F-responsive promoters and
is responsible for the stable repression of E2F target genes,
possibly contributing to the irreversibility of senescence [18].

2. Telomere-Dependent Replicative
Senescence and Telomere-Independent
Premature Senescence

The onset of replicative senescence is determined by the
number of times that a population of cells can divide,
suggesting that a mitotic clock recording cell divisions
governs this cellular process [21, 22]. The discovery that
telomeres get progressively shortened with each cell division
provides a plausible explanation for the nature of this mitotic
clock [23–26]. Because of the inability of DNA polymerases
to replicate DNA at the very ends of linear chromosomes,
telomeres become progressively shortened during successive
cell divisions [23, 27, 28]. Telomerase, which is responsible
for de novo synthesis of telomeric repeats and maintenance
of telomere length [29], is expressed in germline, stem and
cancer cells, but undetectable in majority of normal somatic
cells [30, 31]. In the absence of telomerase, progressive
telomere shortening is thought to be the major cause
of replicative senescence. Supporting this notion, enforced
expression of the telomerase catalytic subunit (TERT) has
been shown to prevent telomere shortening and extend
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the lifespan of human somatic cells [32–34]. Conversely,
inhibition of telomerase in immortal cells has been found to
limit their replicative lifespan [35, 36]. Critically shortened
telomeres lose the protection of telomere-binding proteins,
leading to telomere “uncapping” [26]. Recent studies have
revealed that DNA damage foci containing multiple DNA
damage-response proteins, such as 53BP1, γH2AX, MDC1
and MRE11, are found at telomeres in senescent cells,
suggesting that uncapped telomeres are recognized as DNA
breaks and thus trigger a DNA damage response [37–39].

In addition to telomere attrition, senescence can be acti-
vated by many types of stress, including aberrant activation
of certain oncogenes [40–42], damage to chromatin struc-
ture [43–45], oxidative stress [46–48], DNA damage [49, 50],
and inadequate culture conditions [48, 51, 52]. Collectively,
they are referred to as stress-induced premature senescence.
Among these senescence-inducing stimuli, oxidative stress
has been shown to accelerate telomere shortening [47,
53], possibly by inducing telomeric single-strand breaks
[54]. However, stress-induced premature senescence, unlike
replicative senescence, is largely independent of the telomere
length or the number of cell divisions [55–57].

The final outcome of both replicative senescence and
stress-induced premature senescence is remarkably similar
in that they share common changes in cell cycle regulation
and morphological properties [40, 41, 46, 49, 50, 58, 59].
Although gene expression pattern can vary depending on
the specific types of tissues and cells or the specific stimuli
to trigger the senescence response, senescent cells display
a unique pattern of gene expression that differs from
proliferating cells or quiescent cells. In addition to the
cell cycle regulatory genes, the expression of DNA damage
checkpoint genes, inflammation and stress-associated genes,
genes encoding extracellular matrix proteins and extracel-
lular matrix-degrading enzymes, and cytoskeletal genes and
metabolic genes is generally altered during replicative and
premature senescence. Recent studies suggest that DNA
damage could be a common cause for different forms of
senescence induced by various stimuli [11, 12, 14, 60–
63]. Senescence is now considered as a general stress re-
sponse in normal cells to various types of cellular damage
[64].

3. Molecular Regulation of Senescence

Despite the commonality shared by senescence induced by
various stimuli, regulation of senescence varies significantly
among cells derived from different species, or even different
types of cells from the same species [65]. For example,
telomere shortening is the major cause of senescence in
human fibroblasts [34], whereas mouse fibroblasts undergo
senescence that is independent of telomere shortening and
probably mediated by oxidative stress [48, 52]. Diverse
senescence-inducing stimuli can trigger the senescence re-
sponse through multiple genetic pathways. However, these
pathways seem to converge on p53 and pRb, and inactivation
of both the p53 and pRb pathways is often required to
prevent the activation of senescence [66–70].

In senescent cells, p53 is phosphorylated and its transac-
tivation activity is elevated, although its mRNA and protein
levels are largely unchanged [38, 71–74]. DNA damage
response elicited by telomere dysfunction leads to activation
of ATM/ATR and Chk1/Chk2, which in turn phosphorylate
and stabilize p53 [37–39, 75, 76]. In addition, p53 is activated
and plays an important role in stress-induced premature
senescence [40, 50, 77–79]. This p53 activation is mediated
by p14ARF (or p19ARF in mouse) encoded by the INK4a/Arf
locus. ARF stabilizes p53 by sequestering Mdm2, an E3
ubiquitin ligase targeting p53 for degradation [80]. The ARF-
p53 axis plays an important role during senescence in mouse
cells. Inactivation of p53 or ARF in mouse embryo fibroblasts
(MEFs) is sufficient to prevent senescence [81–83].

One of the p53 targets is p21(CIP1/WAF1) (p21), whose
increased expression transactivated by p53 is responsible
for cell cycle arrest [84]. The expression of p21 is up-
regulated during replicative senescence [85–89]. This p21
up-regulation is dependent on signal(s) initiated by telom-
ere shortening, as expression of TERT blocks this up-
regulation [89–91]. Overexpression of p21 is able to induce
a senescence-like growth arrest in some cells [92, 93], while
deletion of p21 can postpone senescent arrest [94, 95]. Col-
lectively, these studies suggest that p53 regulates senescence
at least in part by inducing p21. As a cyclin-dependent kinase
inhibitor, up-regulation of p21 in senescent cells leads to
inhibition of pRb phosphorylation, which controls cell cycle
progression [18, 84]. There are instances that inactivation
of either p53 or pRb can significantly delay the onset of
senescence, supporting a linear p53-pRb pathway [68, 96].
In many other instances, both p53 and pRb need to be
inhibited to prevent replicative senescence, suggesting two
independent pathways [66–69].

In parallel to p21, p16INK4a (p16) is another cyclin-
dependent kinase inhibitor that leads to pRb hypophospho-
rylation [84]. The expression of p16 is increased during
replicative senescence [88, 97–99], but whether increased
p16 expression is regulated by telomere shortening is
controversial. As telomere shortening is the major cause
of replicative senescence in human fibroblasts [34], and
inactivation of both the p53 and pRb pathways is required
to prevent replicative senescence [67], it is reasonable to
expect that dysfunctional telomeres may signal into p16-
pRb axis. There is indeed an example showing that telomere
dysfunction induces p16 expression [69]. However, the
dynamics of p16 and p21 elevation in senescent cells are
different. The increased expression of p16 occurs after
senescence has already been established in culture [88, 97,
98, 100], in contrast to the rapid increase of p21 expression
in cells approaching replicative senescence [89]. Within a
senescent population of human cells, some cells express
p16, while others express p21 [38, 96, 100]. DNA damage
foci at telomeres are found only in cells expressing p21,
but not in p16 positive cells [38], suggesting that p16
elevation is independent of telomere shortening. Consistent
with this notion, p16 induction during senescence, unlike
p21, is not prevented by ectopic expression of TERT
[53].



Journal of Aging Research 3

The expression of p16 is readily increased during pre-
mature senescence induced by a variety of stress [40–42,
49, 51, 101]. It is not entirely clear how p16 expression is
regulated by various senescence signals [102–104]. Under
certain circumstances, p16 is coordinately regulated with Arf,
which is also encoded by the INK4a/Arf locus. For example,
polycomb complex proteins have been shown to repress the
INK4a/Arf locus [100, 105–108]. Decreased expression of
polycomb complex proteins relieves the repression of the
INK4a/Arf locus and is responsible, at least in part, for the
elevation of p16 and Arf in senescent cells [100, 106, 107].
The expression of p16 and Arf can also be regulated inde-
pendently. Id1, whose expression is decreased in senescent
cells [109], has been shown to specifically suppress p16
expression by forming heterodimers with transcriptional
factors Ets1/2 or E47 and inhibiting their ability to transac-
tivate p16 [110–112]. Down-regulation of Id1 in human and
mouse fibroblasts has been shown to induce p16 expression
and senescence [110, 112], while ectopic expression of Id1
delays senescence in human fibroblasts, mammary epithelial
cells, keratinocytes, and endothelial cells [98, 113–115],
suggesting an important role for Id1 in regulating p16 and
senescence.

The expression of p16 varies significantly among dif-
ferent human cell lines [100], and this variable expression
seems to hold the key to as whether p53 and pRb function
in a linear manner or in parallel. In cells with low or
no p16 expression, p53 and pRb may function in a linear
pathway, whereas p53 and pRb work in parallel in cells
with significant p16 expression. In mouse embryo fibroblasts
(MEFs), inactivation of p53 or ARF, but not p16, is sufficient
to prevent senescence [81–83, 116], indicating that p53-Arf
axis is the major regulator of senescence pathway in mouse
cells. Human mammary epithelial cells quickly encounter
a growth arrest state that is not associated with telomere
shortening but mediated by p16 up-regulation [33, 101].
A subset of cells with p16 inactivation emerge from the
arrest population and continue to divide until reaching a
second growth arrest state that is associated with telomere
shortening [33, 51, 101]. Depending on cell types, culture
conditions, and the extent of stress, inactivation of either
p53-p21-pRb or p16-pRb pathway individually, or both
pathways together, is required to prevent senescence.

4. Senescence As a Barrier to Tumorigenesis

Tumorigenesis is a multistep process, in which a normal
cell acquires mutations in a number of cancer-causing
genes [117]. By restricting cell proliferation and thereby
impeding the accumulation of mutations, senescence acts as
an important tumor suppression mechanism. Furthermore,
senescence induced by aberrant activation of oncogenes,
oxidative stress, or DNA damage prevents cells at risk of
malignant transformation from proliferating [55, 59, 118,
119]. Senescence represents a physiologic response that cells
must overcome in order to divide indefinitely and develop
into tumors. Consistent with the notion that senescence
is a tumor suppression mechanism, well-established tumor

suppressors, including p53, pRb, p16, Arf, and p21, are regu-
lators of senescence [102, 118, 120].

In contrast to normal somatic cells, cells derived from
tumors divide indefinitely in culture. The ability to escape
senescence (i.e., immortality) is a necessary step for cells
to become transformed and one of the hallmarks of can-
cer cells [120]. 80%–90% of human cancer cells acquire
unlimited proliferative potential through reactivation of
telomerase [30, 31], while the rest maintain telomere length
by a recombination-mediated process termed alternative
lengthening of telomeres [121, 122]. These observations
in human cancer strongly suggest a connection between
telomere checkpoint and tumor suppression. Supporting
this connection, inhibition of telomerase activity in cancer
cells limits their growth by triggering telomere shortening
and cell death [35, 36]. Conversely, ectopic expression of
telomerase in normal human cells leads to immortalization
and enhances the ability of these cells to be neoplastically
transformed [33, 34, 123]. Furthermore, transgenic mice
overexpressing TERT show increased propensity to tumori-
genesis [124–128].

Genetic studies in mice deficient in telomerase provide
further support for telomere shortening as a tumor suppres-
sion mechanism. Mice deficient in the telomerase RNA com-
ponent (mTERC−/−) gradually lose telomeres over several
generations [129], and tumorigenesis is significantly reduced
in late generations of mTERC−/− mice with telomere attrition
[130–140]. Decreased tumorigenesis is also observed in late
generation of mice with a null mutation in telomere catalytic
subunit (mTERT−/−), and p53 mutation enables tumor pro-
gression in these mice [141]. More importantly, two recent
studies provide evidence that senescence induced by telomere
shortening is responsible for tumor suppression [142, 143].
When apoptosis is blocked by the expression of Bcl-2 or a
specific p53 mutant (R172P), shortened telomeres reduce
tumorigenesis in mTERC−/− mice. Suppression of tumor
development requires p53-dependent activation of senes-
cence [142, 143], demonstrating that senescence induced
by telomere shortening is an effective tumor suppression
mechanism in vivo.

The discovery that oncogenic Ras protein can induce a
senescent arrest after causing an initial hyperproliferation
in normal cells suggests that induction of senescence is an
intrinsic cellular response that prevents cells at risk from
proliferating [40]. In mouse tumor models with oncogenic
Ras, senescent cells are found in premalignant lesions in lung
[61], spleen [144], breast [145], and pancreas [146]. The
observation of senescent cells has been extended to many
premalignant lesions or benign tissues induced by different
oncogene activation or tumor suppressor inactivation in
mouse [147–155] and human [148, 156–159]. Importantly,
senescent cells are absent in malignant tumors [61, 144,
145, 147–150, 152, 156, 158, 160], suggesting that oncogene-
induced senescence is a powerful tumor suppression mech-
anism by restricting proliferation of cells with oncogenic
mutations and this senescence block must be evaded for
malignancy to progress. Consistently, deletion of senescence
regulators such as p53, Arf, p16, p27, SUV39H1 or PRAK
abrogates senescence and causes progression of tumors to
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the malignant stage [144–146, 148–150, 152, 153, 160]. These
observations point to a causal link between loss of senescence
and malignant transformation.

5. Senescence in Anticancer Therapy

In theory, senescence offers an attractive therapeutic option
if it can be induced in tumor cells. Because of the uncertainty
in reactivating in cells, a response that otherwise has been
overcome, senescence remains as an underappreciated thera-
peutic approach [161, 162]. Surprisingly, many cancer cells
retain the ability to senesce either spontaneously or in
response to external stress stimuli, even though most cancer
cells have overcome the senescent arrest during tumorigene-
sis. As tumors often develop resistance to apoptosis induced
by anticancer treatment, induction of senescence in tumor
cells serves as an alternative approach in cancer therapy, and
could be especially effective in treatment of cancer cells in
which apoptotic pathways are disabled [163].

Telomerase is an attractive target for inducing senescence
in cancer cells. As telomerase is critical for the maintenance
of telomere length [29], inhibition of telomerase in cancer
cells leads to shortening of telomeres, which is a major
cause of senescence activation [24, 33, 34]. Since 80–90%
of human cancers acquire unlimited proliferative potential
through activation of telomerase [30, 31], the strategy of
inhibiting telomerase in cancer therapeutics targets a broad
range of malignancies. In addition, this approach offers
desired specificity in targeting cancer cells, as telomerase
is expressed in most cancer cells, but undetectable in the
majority of normal cells including adult stem cells [164,
165]. The emerging cancer therapeutics targeting telomerase
include small molecule or oligonucleotide inhibitors of
telomerase enzymatic activity, antitelomerase immunother-
apy, inhibitors of telomerase expression and telomere-
disrupting agents [166–168]. The strengths and weaknesses
of these different approaches are discussed in an excellent
review [166]. Although apoptosis is induced by inhibition
of telomerase in some studies, induction of senescence as
a result of telomerase inhibition is clearly demonstrated
to be responsible for tumor suppression [169–173]. The
effectiveness of these approaches has been demonstrated in
many studies [174–177], and several clinical trials targeting
telomerase for cancer therapeutics are now ongoing [166].

Senescence induced by oncogene activation or inactiva-
tion of tumor suppressor genes must be evaded for tumors
to progress to full malignancy, which is often associated
with inhibition of crucial senescence regulators. Reactivation
of senescence response offers a great opportunity in cancer
therapeutics. Considering the critical role of p53 in senes-
cence regulation and common occurrence of p53 mutations
in cancer cells, p53 is an attractive target for reactivation
of senescence in cancer cells. Various approaches have been
developed to target p53 in order to restore normal p53
function in cancer cells, including pharmacological depletion
of mutant p53 protein [178, 179], restoring normal function
in mutant p53 [180, 181], and reactivation of p53 [182–
189]. In most of these reports, apoptosis is the overwhelming

response that is responsible for tumor suppression. Senes-
cence as a tumor suppression mechanism after restoring
p53 expression has been demonstrated in two recent elegant
studies [190, 191]. In a mouse model of hepatocellular
carcinoma, reactivation of p53 in these tumors results in
rapid activation of senescence and subsequent immune
cell infiltration which leads to clearance of tumor cells
[191]. In a separate study, restoration of p53 in p53-
deficient mouse models of lymphoma, and osteosarcoma
leads to tumor regression. Apoptosis is selectively induced
by p53 in lymphomas, while senescence induced by p53
in osteosarcomas is responsible for tumor regression [190],
suggesting that tissue type and/or genetic context play a
critical role in determining the cellular response in p53-
mediated tumor regression. Taken together, restoration of
p53 function in tumors offers an effective way to restrict
tumor growth by inducing senescence or apoptosis. As p16
and p21 have been shown to induce senescence efficiently
[92], these senescence regulators together with Arf and pRb
may provide additional targets for the effective activation of
senescence in cancer therapeutics.

In addition to restoration of tumor suppressor genes,
oncogene inactivation offers another possible intervention
to induce senescence in cancer cells. Suppression of c-Myc
oncogene induces senescence and leads to tumor regression
in diverse tumor types including hepatocellular carcinoma,
lymphoma and osteosarcoma [192]. Senescence induced by
Myc inhibition depends on critical senescence regulators
such as p53, p16 or pRb. Inactivation of these senescence
regulators impairs senescence induction and tumor regres-
sion [192]. Inhibition of Myc as therapeutic intervention
is further illustrated in lung carcinoma mouse model
initiated by oncogenic Ras. Inhibition of Myc triggers rapid
tumor regression associated with apoptosis and senescence
induction [193]. These studies indicate that senescence
response not only is functional in cancer cells, but also
can be reactivated to cause tumor regression. Furthermore,
these studies suggest that therapeutic intervention aimed at
molecules required to support tumor growth may also lead
to senescence induction and ultimately tumor regression.

The finding that senescence can be induced by DNA
damage [49, 50] suggests that chemotherapeutic drugs,
which cause DNA damage, may activate senescence in tumor
cells and therefore determine the drug response in cancer
treatment [194]. Chemotherapeutic drugs induce senescence
in various types of tumor cells in culture [195–199]. In
a Myc-driven mouse lymphoma model, chemotherapeutic
drug cyclophosphamide induces p53- and p16-dependent
senescence in lymphomas, leading to better prognosis follow-
ing chemotherapy [163]. In human breast cancer, a high per-
centage of tumors after chemotherapy show positive staining
for senescence markers, and induction of senescence in these
tumors is associated with p53 and p16. Induction of senes-
cence is not observed in tumors before chemotherapy [199],
suggesting that senescence observed in tumors is induced by
chemotherapy. Taken together, these studies show that senes-
cence induction can positively influence the outcome of can-
cer treatment. Senescence-inducing drugs may be effective
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alone or in combination with classic therapeutic approaches
to reduce tumor growth and toxicity to normal cells.

6. Senescence and Aging

Aging is characterized by progressive deterioration of phys-
iological function in all tissues and organs after a period
of development. This biological process is associated with
increased susceptibility to major chronic diseases and ulti-
mately mortality. Since the discovery of senescence in
cultured cells, it is recognized that cellular senescence and
organismal aging may be closely related because of their
shared ability to limit lifespan [21]. It is hypothesized
that constant tissue regeneration results in accumulation of
senescent cells in somatic tissues, which limits tissue renewal,
perturbs normal tissue homeostasis and ultimately leads to
aging [59, 118, 200]. Cells with characteristics of senescence
have been reported to increase with advancing age in mice,
primates and humans [9, 201–206]. In addition, accumula-
tion of senescent cells is linked with age-associated patholog-
ical conditions, such as osteoarthritis [207], atherosclerosis
[208–211], dementia [212], liver cirrhosis [203], and respira-
tory disease [213, 214]. The initial support for the senescence
theory of aging comes from the observation of an inverse
correlation between the in vitro lifespan of cells and the age
of donors from which they are derived [215–219], although
this correlation has been disputed [220]. Subsequent support
comes from studies of cells derived from progeroid patients,
such as Werner syndrome, which achieve fewer cell divisions
before entering senescence than cells derived from normal
individuals of same age [221]. Direct evidence supporting
senescence as one of the aging mechanisms, however, is still
missing. It remains to be determined whether accumulation
of senescent cells is responsible for aging or age-related
diseases.

Recent studies suggest that telomere checkpoint plays
an important role in the aging process. It is evident that
telomere shortening occurs in aged human tissues [222–
235], at sites of age-related pathological conditions [203,
236–243], or associated with stress and obesity [244, 245].
Although it remains to be demonstrated whether telomere
shortening leads to the accumulation of senescent cells in
vivo, and more importantly makes a substantial contribution
to aging, studies of human premature aging syndromes
support a link between telomere attrition and aging. Patients
of dyskeratosis congenita and aplastic anemia have mutations
in telomerase RNA or catalytic subunit [246–248], and are
characterized by accelerated telomere shortening [239, 246].
Further evidence for a role of telomere attrition in aging
comes from genetic studies of mice deficient in telomerase.
While mice with a null mutation in telomerase RNA
(mTERC−/−) are apparently normal in early generations,
these mice in later generations gradually lose telomeres [129]
and show accelerated aging phenotypes [140, 249]. Similarly,
premature aging phenotypes are observed in mTERC−/−

mice on a CAST/EiJ background, which have shorter and
more homogenous telomere length than C576BL/6 strain.
Even with the presence of telomerase, shortened telomeres

in mTERC+/− mice on CAST/EiJ background are associated
with premature aging [250]. A recent study shows that
telomerase reactivation can reverse much of the premature
aging phenotypes in telomerase-deficient mice [251], indi-
cating that telomere attrition plays a critical role in aging.
Furthermore, mutations in WRN or BLM in the telomere
dysfunctional background in mouse cause premature aging
phenotypes that are characteristics of Werner or Bloom
syndrome in human. Such premature aging phenotypes
are absent in mice with WRN or BLM mutation but with
long telomeres [252, 253]. These studies clearly establish
a link between telomere attrition and aging. Whether this
link is mediated through senescence triggered by telomere
shortening is currently unknown.

Premature aging phenotypes in late generation mTERC−/−

mice are associated with reduced renewal capacity in highly
regenerative tissues such as skin, intestine, bone marrow
and reproductive organs [140, 249–251], suggesting that
stem cells may be affected by telomere shortening. Tissue-
specific or adult stem cells, which are capable of self-renewal
and differentiation, are essential for the normal homeostatic
maintenance and regenerative repair of tissues throughout
the lifetime of an organism. The self-renewal ability of stem
cells is known to decline with advancing age, eventually
leading to the accumulation of unrepaired, damaged tissues
in old organisms [59, 254–256]. By limiting cell proliferation,
senescence in stem cells is hypothesized to contribute to
aging by reducing the renewal capacity of these cells [21, 59,
118]. Not all stem cells express high level of telomerase. For
example, human mesenchymal stem cells have no detectable
telomerase activity [257], and hematopoietic stem cells from
human and mouse have low level of telomerase activity [258–
260]. Telomere attrition has been observed in these stem
cells [257, 260–263]. It is possible that senescence induced by
telomere attrition may occur in stem cells over the lifespan of
an organism and would result in the reduction of the renewal
capacity of stem cells. However, it remains to be determined
whether stem cells undergo senescence during aging.

Several senescence regulators have been found to play
a critical role in aging. The expression of p16 increases
with advancing age in humans and rodents [264–270].
Increase of p16 in aged rodents is attenuated in several
tissues (adrenal, heart, kidney, ovary, and testis) by caloric
restriction [264], which potently slows aging. Moreover, age-
related increase of p16 is found to be associated with a decline
in the renewal capacity of stem cells in brain, pancreas,
and hematopoietic system, and these stem cells derived
from aged mice lacking p16 have increased regenerative
potential [271–273]. In addition, p53 and p21 have also
been implicated to impact aging. It has been shown that
p21 is required to maintain quiescence of hematopoietic
stem cells (HSCs). In the absence of p21, increased cell
cycling leads to stem cell exhaustion, which is responsible for
impaired self-renewal of HSCs [274]. Interestingly, deletion
of p21 in late generation mTERC−/− mice improves stem
cells function and rescues much of the premature aging
phenotypes associated with telomere attrition [275]. HSCs
from p53-deficient mice have increased stem cell population
and enhanced renewal capacity [276, 277]. Suppression of
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stem cells function by p53 is also observed in neural stem
cells [278]. Furthermore, mice with excessive p53 activity
maintain cancer protection, but age prematurely including
impairment of HSCs [279–282], which is at least in part due
to increased sensitivity to senescence-inducing stimuli [280].
Interestingly, concomitant increase of normal p53 and p19Arf

leads to increased longevity in mice [283], although elevation
of p53 alone is not sufficient to increase longevity [284, 285].
Collectively, these recent studies support an emerging link
between senescence regulation and aging, and show the
potential importance of senescence regulation in stem cells
aging.

Senescence is regarded as an antagonistic pleiotropy:
beneficial as a tumor suppressor, but detrimental to organ-
isms by contributing to aging. Great progress has been made
in our understanding of senescence regulation in cancer and
aging. Challenges remain as how to effectively utilize senes-
cence as a potent treatment for cancer. The exact function
of senescence-associated secretome in cancer and aging is
of great interest and needs to be investigated. Investigation
of telomere shortening and senescence in stem cells during
physiological aging is much needed for our understanding of
the role of senescence in aging, which leads to the intriguing
question as whether inhibition of senescence may slow aging.
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