Title

Structure of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Nucleotide binding sites

UMMS Affiliation

Department of Cell Biology

Date

6-15-1989

Document Type

Article

Subjects

Adenosine Diphosphate; Adenosine Triphosphatases; Adenosine Triphosphate; Affinity Labels; Azides; Binding, Competitive; Chlamydomonas; Dynein ATPase; purification; Flagella; Kinetics; Macromolecular Substances; Protein Binding

Abstract

The photoaffinity analogs 2-azidoadenosine 5'-tri(di)-phosphate (2-N3AT(D)P) and 8-azidoadenosine 5'-triphosphate (8-N3ATP) have been used to probe the substructural organization of the nucleotide binding pockets within the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both 2-N3ATP and 8-N3ATP are competitive inhibitors of dynein ATP hydrolysis, and both analogs are themselves hydrolyzed by the alpha-beta dimer. Following vanadate-dependent photolysis at the V1 site (by UV irradiation in the presence of Mg2+, ATP, and vanadate), both probes exclusively labeled the larger fragment from the alpha chain. In contrast, within the beta chain the predominant insertion sites for the two analogs were located on opposite sides of the V1 site. Therefore, the hydrolytic pockets of these two molecules have different substructures. Vanadate-dependent photolysis of the alpha and beta chains at the V2 sites (by UV irradiation in the presence of vanadate and Mn2+) profoundly affected the predominant modification sites; for example, following photolysis at the V2a site neither fragment of the alpha chain was photolabeled by 2-N3ATP or 8-N3ATP. Based on the photolabeling patterns obtained, the single V2 site within the beta chain is predicted to be analogous to the V2b site within the alpha chain. The results support the hypothesis that the V2 sites occur within the ATP binding pockets, and indicate that these functional domains are composed of portions of the heavy chains which are linearly separated by up to at least 100,000 daltons. Thus, the central region of each dynein heavy chain must be extensively folded so as to bring the widely separated photocleavage and photolabeling sites together within a single catalytic unit.

Rights and Permissions

Citation: J Biol Chem. 1989 Jun 15;264(17):10210-8.

Related Resources

Link to Article in PubMed

Journal Title

The Journal of biological chemistry

PubMed ID

2524490