UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology; Department of Scientific and Research Computing



Document Type



The calcium-binding protein calmodulin (CaM) directly binds to membrane transport proteins to modulate their function in response to changes in intracellular calcium concentrations. Because CaM recognizes and binds to a wide variety of target sequences, identifying CaM-binding sites is difficult, requiring intensive sequence gazing and extensive biochemical analysis. Here, we describe a straightforward computational script that rapidly identifies canonical CaM-binding motifs within an amino acid sequence. Analysis of the target sequences from high resolution CaM-peptide structures using this script revealed that CaM often binds to sequences that have multiple overlapping canonical CaM-binding motifs. The addition of a positive charge discriminator to this meta-analysis resulted in a tool that identifies potential CaM-binding domains within a given sequence. To allow users to search for CaM-binding motifs within a protein of interest, perform the meta-analysis, and then compare the results to target peptide-CaM structures deposited in the Protein Data Bank, we created a website and online database. The availability of these tools and analyses will facilitate the design of CaM-related studies of ion channels and membrane transport proteins.


Citation: Mruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: Predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 2014 Jun 16. doi:10.1085/jgp.201311140. Link to article on publisher's website

Copyright 2014 Mruk et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at

Co-authors Karen Mruk and Brian Farley are both doctoral students in the Biochemistry and Molecular Pharmacology Program in the Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.

Related Resources

Link to article in PubMed

PubMed ID



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.